Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Подписчиков: 0, рейтинг: 0
手の指くらいの直径の雹の例。白色のものや透明な部分をもつもの、丸いものや突起のあるものなど形は様々。

(ひょう)とは、積乱雲から降る直径5 ミリメートル(mm)以上の状や塊状のの粒。落下する雹はその衝撃によって人体農作物家畜建物などに被害をもたらすことがある。

性状と特徴

積層構造が見える雹
スパイク状突起が目立つ大きな雹
スパイク状突起が目立つ大きな雹
激しい降雹

対流のある積乱雲の中で発生し、強い上昇気流に支えられて滞空するものの、やがて大きくなり、また気流が弱まり支えきれなくなって落下する。強いと共に発生する場合が多い。

のうち氷霰と雹は、どちらも対流雲から降る透明・半透明の氷の粒で、氷霰が大きく成長したものが雹である。2つは大きさによって区分され、直径5 mm未満の氷粒は霰となる。

大きさは、直径5 mmから大きくて50 mm程度のものが多いが、稀にもっと大きなものが降る場合がある。いくつかの雹が固まり不規則な形となって降るものもある。

雹の大きさは1 cm以下のものが多いが、時に数 cmにも成長し、ゴルフボール大となることもある。また稀な例として、大きな雹同士がくっつき部分的に融合して大きな不定形の塊を形成することがある。

雹が落下するときには、小さいものでもパタパタ、パラパラという音を立てる。大量に降った場合、雨の音と混じるなどして非常に大きな音を出し、周囲の音が聞こえないくらいの騒音となることもある。

降雹の継続時間は短く、15分を超えることはめったにないとされる。

発達した積乱雲、おおむね雲頂が6,000mを超えるようなもので雹が生じうる。どの積乱雲の中でも氷晶や霰が形成されているが、そのうちどの積乱雲が霰を雹にまで発達させるのかは、研究の途上にある。なお、上昇流と下降流が分離して持続する構造をもつスーパーセル型の雷雨では強い雹が発生しやすいことは知られている。

雹の成長と積層構造

雹は、強い上昇気流のある雲の中で、凍結成長する0 以下の層と、部分的に融解する0℃以上の層(融解層)とを、上下に行ったり来たりすることで成長すると考えられる。0 ℃以下の層には過冷却の水滴(雲粒)が多く存在し、この中をやや大きな氷晶が通過するときに周囲の粒を捕捉して成長する。0 ℃以上の層では氷塊の表面が融解して膜のように付着した状態となり、これが再び凍結すると透明な氷の層となる。

雹を割った断面を観察すると、透明な層と半透明な層が交互に重なる積層構造をしたものが見られ、その成長過程を垣間見ることができる。一方、そうした層が見られない透明・不透明な氷のみの形もある。

半透明な部分は、低温下で芯となる雹に雲粒が付着してすぐに凍結し隙間に空気が残っている。透明な部分は、比較的高い温度の下で雲粒が融解して空気が抜けてから凍結している。成長過程として、前者を乾燥成長、後者を湿潤成長とも呼ぶ。

芯となる雹は数 mmから1 センチメートル(cm)程度で大抵は幾何中心からずれている(偏芯)。積層は5層以下のことが多いが、巨大な雹では20層以上あった例もある。

雹の密度は比較的大きく、比重は0.85 グラム毎立方センチメートル(g/cm3) - 0.92 g/cm3程度の値をとる。空気を多く含む場合はやや小さな値になる。

積乱雲付近の上空で乾燥した空気の流入があると、蒸発による冷却効果が大きくなり、雹が生じやすく・大きく成長しやすくなる。

気温がおよそ-30℃を下回るような低温の層では、過冷却水滴がわずかしかなく雹はほとんど成長しない。

記録が残っている中で世界最大の雹は、1917年大正6年)6月29日埼玉県大里郡熊谷町(現:熊谷市)に降ったカボチャ大の雹で、直径七八分(29.6 cm)、重さ九百(3.4 kg)とされる 。なお、アメリカ海洋大気庁によれば、2003年6月22日アメリカ合衆国ネブラスカ州に降った直径7.0インチ(17.8 cm)、周囲18.75インチ(47.6 cm)の雹を世界最大としている。

雹が積雪のように積もることもある。2019年6月30日、メキシコハリスコ州グアダラハラでは最大2mほど雹が積もったことがある。丘陵地帯では少なくとも50台の自動車が氷の濁流に押し流され、中には氷の下に埋没した車もあった。

雹と気候・季節

積乱雲による雷雨が最も多いのは熱帯だが、雹の発生が最も多いのは中緯度の内陸で、熱帯を上回る。これは、熱帯では高い高度まで0℃以上の暖かい空気があるためと考えられ、熱帯では主に標高の高い地域に雹が多い。雹の発生条件のひとつとして気温0℃の対地高度が約3,500mあるいは4,000m以下というものがある。

また、平地よりも山地のほうが多いが、地形性の上昇気流が雷雲の発達に寄与することや、標高が高いと地表に達するまでの時間が短いことが理由と考えられる。インド北部やバングラデシュの山岳地帯が代表的な例として挙げられ、雹による死亡者数が最も多く報告されている地域でもある。中国チベット高原中央部、アルプス山脈ピレネー山脈も地形性の雹の多発地帯である。

中国内陸部でもしばしば雹の被害が報告される。ヨーロッパでは、ドイツ南部・西部、ベネルクス南部・東部、フランス北部・東部にかけての地域やイタリア北部、セルビアクロアチアで雹が多い。

北アメリカでは、ロッキー山脈風下の地域に比較的多く、最も多いアメリカコロラド州ネブラスカ州ワイオミング州は"Hail Alley"(雹街道)の異名もある。

雹の発生頻度の世界的分布を示す資料もあるが、雨のような緻密な観測によるものではない。Court・Griffiths(1981)による降雹日数の等日線図が用いられることがあるが、情報源は人が居住する地域の観測報告に限られること(報告例は人口密度の高い地域に偏っている)、雹が局地的な現象であることに留意する必要がある。観測データにモデルによる推定を加えて分布を作成することも試みられている。なお、人口増加や携帯機器の普及などで報告件数の増加・変化もみられている。

中緯度では雷雨の発生頻度に関連し、夏に雹が多くなる傾向にある。ただし、地中海周辺部では秋に最も多い地域がある。日本では盛夏にあたる8月前後よりも初夏の5 - 6月に多い傾向があり、日本海側では冬季にも季節風の吹き出しに伴って積乱雲が発生するので降雹がある。

雹による被害

大きな雹の落下の衝撃で割れた車のフロントガラス
雹害を受けたリンゴの実。傷の部分はへこみ変色している

雹が降ること(降雹、こうひょう)による被害を雹害(ひょうがい)という。小さな雹が大量に降った場合、積雪のように堆積してビニールハウスなどを破損させたり、植物の葉を落としたりする。

雹害は局地的な現象で、積乱雲の通過経路に沿って残る被害の痕跡は"雹道"とも呼ばれる。雹害の多い地域の農業では、果樹園やビニールハウスに(防雹ネット)を掛けて予防することがある。

日本では、5月から8月の関東地方甲信地方東北地方で雹害が多い傾向にある。関東地方や長野県などの農業地帯、山間部では雹の通り道として降雹が起きやすいと伝えられる地域があり、東京都あきる野市八王子市境の雹留山(ひょうどめやま)がその一例である。

直径が5 cm以上もあるような巨大な雹は落下速度が100 キロメートル毎時(km/h)を超え、単独でも甚大な被害を出す。自動車ボンネット窓ガラス家屋を破損させたり、農作物に大きな被害を与えたりする。大きな雹が人間や動物に当たると怪我をしたり、頭部に直撃した場合には脳震盪を起こしたりして、の危険性さえある。

英語圏などでは激しい降雹を"hail storm(雹嵐)"と呼ぶ。

日本の主な雹害

世界の主な雹害

雹害の防止

中世ヨーロッパでは、の音や大砲の轟音によって雹を防ごうと試みられた。現代でも同様にソニックブームを発射する仕組みなどの"hail cannon"が、農作物等への被害防止などのために使用されているところがある。

第二次世界大戦後には人工降雨(気象種まき)も用いられるようになった。ソ連ではロケットや大砲によりヨウ化銀を散布し雹による農作物の被害を70 – 98%低減したとの報告があるが、欧米で行われた無作為化実験ではこれを再現できないという結果に至った。日本でも1972年、旧国立防災科学技術センター群馬県榛東村でヨウ化銀を詰めたロケットを積乱雲に打ちこむ実験を行っている。

1965年から2005の間に、少なくとも15の国で雹の発生を低減する実験が行われている。しかし、これらの手法が有効であるかどうか、明確な結論を出すには至っていない。

観測

レーダー断面図でのhail spikeの模式図。左下から発射された電波は雹を含む雷雲で強い赤色の反射を示し、電波の一部は雹で散乱され地面で反射、再び雹を経由して散乱され戻った電波はピンク色で示された雷雲後方の弱いエコーとして現れる。

雨や雪と異なり雹の観測は人による報告に依存しており、局地的であることから一般市民からの報告も重要なファクターとなっている。

国際気象通報式では、観測時に降っているか止んでいるか、雨・雪を伴うかどうか、雷を伴う否か、雨や雷の3段階強度などの組み合わせで区分される天気から選択して報告する。ひょうを表す基本の記号はSymbol hail WMO.svg

ラジオ気象通報などの日本式天気図では、観測時に雹が降っている場合に天気を「ひょう」とする。天気記号は(ひょう)。ただし優先順位があり、雷を伴う場合は雷とする。

航空気象の通報式では、「降水現象」の欄のGRがひょうを表す。

日本では、気象庁は管区気象台などの拠点では天気や大気現象の目視観測を行っており、大気現象として雹のほか、霰、凍雨などを区別し記録している。自動気象観測装置を導入したところ(アメダスやほとんどの地方気象台)では天気の雨雪判別(雨・雪・霙)のみで、大気現象の記録は2019年2月に廃止した。機械による天気の自動判別では、落下する物体の大きさを判別することは難しいためである。

雹の大きさを表す指標として、イギリスの竜巻・暴風研究機構(TORRO)が考案した11段階のTORRO Hailstorm Intensity Scaleがある。

降雨を観測する気象レーダーでは、雹の発生時に散乱による異常エコーが観測される。hail spikeあるいはthree body scatter spike (TBSS)と呼ばれるものは、アンテナから見て雹を含む雲の後方に現れる弱いエコー。サイドローブエコーと呼ばれるものは、アンテナを中心として雹の位置を通る弧状に現れるエコー。また、レーダー電波の反射強度は水滴が大きいほど強く、氷は水よりもレーダー電波の反射強度が弱いものの、雹は雨粒よりも大きいため強い降雨として映る。強い降雨と雹との判別は、3次元のレーダー解析から算出する鉛直積算雨水量 (Vertically integrated liquid, VIL)などを用いる手法がある。

また、偏波レーダーを用いて雨粒と雹を識別する技術が研究途上にある。

大きな雹の記録

この節に登場する場所を記した地図。雷については発生場所のみ示した。の位置(地球内)
ゴパルガンジ
ゴパルガンジ
ビビアン
ビビアン
オーロラ
オーロラ
この節に登場する場所を記した地図。雷については発生場所のみ示した。 (地球)
ネブラスカ州オーロラで2003年6月22日に降った直径7インチの巨大な雹

名称

「雹」の最古の用例は15世紀の経覚私要鈔とやや新しい。「雹」の字音はハク(漢音)・ホク(呉音)で、「ヒョウ」の字音はない。これは「包」の呉音「ヒョウ」につられたものとする説や、古字書『観智院本名義抄』に「ハウ」と記されたものが変化したものとする説、「氷雨」(ひょうう)が変化したものとする説、「氷」の字音「ヒョウ」からとする説などがある。

脚注

注釈

参考文献

関連項目

  • (あられ)
  • (みぞれ)
  • 氷雨(ひさめ)

外部リンク


Новое сообщение